Competition between internal AlF(4)(-) and receptor-mediated stimulation of dorsal raphe neuron G-proteins coupled to calcium current inhibition.

نویسندگان

  • Y Chen
  • N J Penington
چکیده

Intracellular aluminum fluoride (AlF(4)(-)), placed in a patch pipette, activated a G-protein, resulting in a "tonic" inhibition of the Ca(2+) current of isolated serotonergic neurons of the rat dorsal raphe nucleus. Serotonin (5-HT) also inhibits the Ca(2+) current of these cells. After external bath application and quick removal of 5-HT to an AlF(4)(-) containing cell, there was a reversal or transient disinhibition (TD) of the inhibitory effect of AlF(4)(-) on Ca(2+) current. A short predepolarization of the membrane potential to +70 mV, a condition that is known to reverse G-protein-mediated inhibition, reversed the inhibitory effect of AlF(4)(-) on Ca(2+) current and brought the Ca(2+) current to the same level as that seen at the peak of the TD current. With AlF(4)(-) in the pipette, the TD phenomenon could be eliminated by lowering pipette MgATP, or by totally chelating pipette Al(3+). In the presence of AlF(4)(-), but with either lowered MgATP or extreme efforts to eliminate pipette Al(3+), the rate of recovery from 5-HT on wash was slowed, a condition opposite to that where a TD occurred. The putative complex of AlF(4)(-)-bound G-protein (Galpha.GDP. AlF(4)(-)) appeared to free G-betagamma-subunits, mimicking the effect on Ca(2+) channels of the G.GTP complex. The ON-rate of the inhibition of Ca(2+) current, after a depolarizing pulse, by betagamma-subunits released by AlF(4)(-) in the pipette was significantly slower than that of the agonist-activated G-protein. The OFF-rate of the AlF(4)(-)-mediated inhibition in response to a depolarizing pulse, a measure of the affinity of the free G-betagamma-subunit for the Ca(2+) channel, was slightly slower than that of the agonist stimulated G-protein. In summary, AlF(4)(-) modified the OFF-rate kinetics of G-protein activation by agonists, but had little effect on the kinetics of the interaction of the betagamma-subunit with Ca(2+) channels. Agonist application temporarily reversed the effects of AlF(4)(-), making it a complementary tool to GTP-gamma-S for the study of G-protein interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order of Application Determines the Interaction Between Phorbol Esters and GTP-g-S in Dorsal Raphe Neurons: Evidence That the Effect of 5-HT Is Modified Upstream of the G Protein Ca Channel Interaction

Chen, Yuan and Nicholas J. Penington. Order of application activated, G-protein-mediated inhibition of Ca current, determines the interaction between phorbol esters and GTP-g-S in with the notable exception of a study in frog sympathetic dorsal raphe neurons: evidence that the effect of 5-HT is modified neurons (Yang and Tsien 1993). In some of these studies upstream of the G protein Ca channel...

متن کامل

D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance.

The dorsal raphe (DR) receives a prominent dopamine (DA) input that has been suggested to play a key role in the regulation of central serotoninergic transmission. DA is known to directly depolarize DR serotonin neurons, but the underlying mechanisms are not well understood. Here, we show that activation of D2-like dopamine receptors on DR 5-HT neurons elicits a membrane depolarization and an i...

متن کامل

Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons.

KEY POINTS In the dorsal raphe nucleus, it is known that serotonin release activates metabotropic 5-HT1A autoreceptors located on serotonin neurons that leads to an inhibition of firing through the activation of G-protein-coupled inwardly rectifying potassium channels. We found that in mouse brain slices evoked serotonin release produced a 5-HT1A receptor-mediated inhibitory postsynaptic curren...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 2000